3.2377 \(\int \frac {1}{(a+b \sqrt [3]{x})^3 x} \, dx\)

Optimal. Leaf size=56 \[ -\frac {3 \log \left (a+b \sqrt [3]{x}\right )}{a^3}+\frac {\log (x)}{a^3}+\frac {3}{a^2 \left (a+b \sqrt [3]{x}\right )}+\frac {3}{2 a \left (a+b \sqrt [3]{x}\right )^2} \]

[Out]

3/2/a/(a+b*x^(1/3))^2+3/a^2/(a+b*x^(1/3))-3*ln(a+b*x^(1/3))/a^3+ln(x)/a^3

________________________________________________________________________________________

Rubi [A]  time = 0.03, antiderivative size = 56, normalized size of antiderivative = 1.00, number of steps used = 3, number of rules used = 2, integrand size = 15, \(\frac {\text {number of rules}}{\text {integrand size}}\) = 0.133, Rules used = {266, 44} \[ \frac {3}{a^2 \left (a+b \sqrt [3]{x}\right )}-\frac {3 \log \left (a+b \sqrt [3]{x}\right )}{a^3}+\frac {\log (x)}{a^3}+\frac {3}{2 a \left (a+b \sqrt [3]{x}\right )^2} \]

Antiderivative was successfully verified.

[In]

Int[1/((a + b*x^(1/3))^3*x),x]

[Out]

3/(2*a*(a + b*x^(1/3))^2) + 3/(a^2*(a + b*x^(1/3))) - (3*Log[a + b*x^(1/3)])/a^3 + Log[x]/a^3

Rule 44

Int[((a_) + (b_.)*(x_))^(m_.)*((c_.) + (d_.)*(x_))^(n_.), x_Symbol] :> Int[ExpandIntegrand[(a + b*x)^m*(c + d*
x)^n, x], x] /; FreeQ[{a, b, c, d}, x] && NeQ[b*c - a*d, 0] && ILtQ[m, 0] && IntegerQ[n] &&  !(IGtQ[n, 0] && L
tQ[m + n + 2, 0])

Rule 266

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_), x_Symbol] :> Dist[1/n, Subst[Int[x^(Simplify[(m + 1)/n] - 1)*(a
+ b*x)^p, x], x, x^n], x] /; FreeQ[{a, b, m, n, p}, x] && IntegerQ[Simplify[(m + 1)/n]]

Rubi steps

\begin {align*} \int \frac {1}{\left (a+b \sqrt [3]{x}\right )^3 x} \, dx &=3 \operatorname {Subst}\left (\int \frac {1}{x (a+b x)^3} \, dx,x,\sqrt [3]{x}\right )\\ &=3 \operatorname {Subst}\left (\int \left (\frac {1}{a^3 x}-\frac {b}{a (a+b x)^3}-\frac {b}{a^2 (a+b x)^2}-\frac {b}{a^3 (a+b x)}\right ) \, dx,x,\sqrt [3]{x}\right )\\ &=\frac {3}{2 a \left (a+b \sqrt [3]{x}\right )^2}+\frac {3}{a^2 \left (a+b \sqrt [3]{x}\right )}-\frac {3 \log \left (a+b \sqrt [3]{x}\right )}{a^3}+\frac {\log (x)}{a^3}\\ \end {align*}

________________________________________________________________________________________

Mathematica [A]  time = 0.06, size = 50, normalized size = 0.89 \[ \frac {\frac {3 a \left (3 a+2 b \sqrt [3]{x}\right )}{\left (a+b \sqrt [3]{x}\right )^2}-6 \log \left (a+b \sqrt [3]{x}\right )+2 \log (x)}{2 a^3} \]

Antiderivative was successfully verified.

[In]

Integrate[1/((a + b*x^(1/3))^3*x),x]

[Out]

((3*a*(3*a + 2*b*x^(1/3)))/(a + b*x^(1/3))^2 - 6*Log[a + b*x^(1/3)] + 2*Log[x])/(2*a^3)

________________________________________________________________________________________

fricas [B]  time = 0.63, size = 129, normalized size = 2.30 \[ \frac {3 \, {\left (3 \, a^{6} - 2 \, {\left (b^{6} x^{2} + 2 \, a^{3} b^{3} x + a^{6}\right )} \log \left (b x^{\frac {1}{3}} + a\right ) + 2 \, {\left (b^{6} x^{2} + 2 \, a^{3} b^{3} x + a^{6}\right )} \log \left (x^{\frac {1}{3}}\right ) + {\left (2 \, a b^{5} x + 5 \, a^{4} b^{2}\right )} x^{\frac {2}{3}} - {\left (a^{2} b^{4} x + 4 \, a^{5} b\right )} x^{\frac {1}{3}}\right )}}{2 \, {\left (a^{3} b^{6} x^{2} + 2 \, a^{6} b^{3} x + a^{9}\right )}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/3))^3/x,x, algorithm="fricas")

[Out]

3/2*(3*a^6 - 2*(b^6*x^2 + 2*a^3*b^3*x + a^6)*log(b*x^(1/3) + a) + 2*(b^6*x^2 + 2*a^3*b^3*x + a^6)*log(x^(1/3))
 + (2*a*b^5*x + 5*a^4*b^2)*x^(2/3) - (a^2*b^4*x + 4*a^5*b)*x^(1/3))/(a^3*b^6*x^2 + 2*a^6*b^3*x + a^9)

________________________________________________________________________________________

giac [A]  time = 0.17, size = 49, normalized size = 0.88 \[ -\frac {3 \, \log \left ({\left | b x^{\frac {1}{3}} + a \right |}\right )}{a^{3}} + \frac {\log \left ({\left | x \right |}\right )}{a^{3}} + \frac {3 \, {\left (2 \, a b x^{\frac {1}{3}} + 3 \, a^{2}\right )}}{2 \, {\left (b x^{\frac {1}{3}} + a\right )}^{2} a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/3))^3/x,x, algorithm="giac")

[Out]

-3*log(abs(b*x^(1/3) + a))/a^3 + log(abs(x))/a^3 + 3/2*(2*a*b*x^(1/3) + 3*a^2)/((b*x^(1/3) + a)^2*a^3)

________________________________________________________________________________________

maple [A]  time = 0.01, size = 49, normalized size = 0.88 \[ \frac {3}{2 \left (b \,x^{\frac {1}{3}}+a \right )^{2} a}+\frac {3}{\left (b \,x^{\frac {1}{3}}+a \right ) a^{2}}+\frac {\ln \relax (x )}{a^{3}}-\frac {3 \ln \left (b \,x^{\frac {1}{3}}+a \right )}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(b*x^(1/3)+a)^3/x,x)

[Out]

3/2/a/(b*x^(1/3)+a)^2+3/a^2/(b*x^(1/3)+a)-3*ln(b*x^(1/3)+a)/a^3+1/a^3*ln(x)

________________________________________________________________________________________

maxima [A]  time = 0.49, size = 57, normalized size = 1.02 \[ \frac {3 \, {\left (2 \, b x^{\frac {1}{3}} + 3 \, a\right )}}{2 \, {\left (a^{2} b^{2} x^{\frac {2}{3}} + 2 \, a^{3} b x^{\frac {1}{3}} + a^{4}\right )}} - \frac {3 \, \log \left (b x^{\frac {1}{3}} + a\right )}{a^{3}} + \frac {\log \relax (x)}{a^{3}} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x^(1/3))^3/x,x, algorithm="maxima")

[Out]

3/2*(2*b*x^(1/3) + 3*a)/(a^2*b^2*x^(2/3) + 2*a^3*b*x^(1/3) + a^4) - 3*log(b*x^(1/3) + a)/a^3 + log(x)/a^3

________________________________________________________________________________________

mupad [B]  time = 1.14, size = 54, normalized size = 0.96 \[ \frac {\frac {9}{2\,a}+\frac {3\,b\,x^{1/3}}{a^2}}{a^2+b^2\,x^{2/3}+2\,a\,b\,x^{1/3}}-\frac {6\,\mathrm {atanh}\left (\frac {2\,b\,x^{1/3}}{a}+1\right )}{a^3} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/(x*(a + b*x^(1/3))^3),x)

[Out]

(9/(2*a) + (3*b*x^(1/3))/a^2)/(a^2 + b^2*x^(2/3) + 2*a*b*x^(1/3)) - (6*atanh((2*b*x^(1/3))/a + 1))/a^3

________________________________________________________________________________________

sympy [A]  time = 1.91, size = 386, normalized size = 6.89 \[ \begin {cases} \frac {\tilde {\infty }}{x} & \text {for}\: a = 0 \wedge b = 0 \\\frac {\log {\relax (x )}}{a^{3}} & \text {for}\: b = 0 \\- \frac {1}{b^{3} x} & \text {for}\: a = 0 \\\frac {2 a^{2} x^{\frac {2}{3}} \log {\relax (x )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} - \frac {6 a^{2} x^{\frac {2}{3}} \log {\left (\frac {a}{b} + \sqrt [3]{x} \right )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} + \frac {9 a^{2} x^{\frac {2}{3}}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} + \frac {4 a b x \log {\relax (x )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} - \frac {12 a b x \log {\left (\frac {a}{b} + \sqrt [3]{x} \right )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} + \frac {6 a b x}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} + \frac {2 b^{2} x^{\frac {4}{3}} \log {\relax (x )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} - \frac {6 b^{2} x^{\frac {4}{3}} \log {\left (\frac {a}{b} + \sqrt [3]{x} \right )}}{2 a^{5} x^{\frac {2}{3}} + 4 a^{4} b x + 2 a^{3} b^{2} x^{\frac {4}{3}}} & \text {otherwise} \end {cases} \]

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/(a+b*x**(1/3))**3/x,x)

[Out]

Piecewise((zoo/x, Eq(a, 0) & Eq(b, 0)), (log(x)/a**3, Eq(b, 0)), (-1/(b**3*x), Eq(a, 0)), (2*a**2*x**(2/3)*log
(x)/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)) - 6*a**2*x**(2/3)*log(a/b + x**(1/3))/(2*a**5*x**(2/
3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)) + 9*a**2*x**(2/3)/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)
) + 4*a*b*x*log(x)/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)) - 12*a*b*x*log(a/b + x**(1/3))/(2*a**
5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)) + 6*a*b*x/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)
) + 2*b**2*x**(4/3)*log(x)/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)) - 6*b**2*x**(4/3)*log(a/b + x
**(1/3))/(2*a**5*x**(2/3) + 4*a**4*b*x + 2*a**3*b**2*x**(4/3)), True))

________________________________________________________________________________________